ME 141
 Engineering Mechanics

Portion 8
Introduction to Dynamics:
Kinematics

Partha Kumar Das
Lecturer

Kinematics of a Point:

Relative Motion

Suppose, \mathbf{O} is any reference point.
The relative position of \mathbf{B} with respect to A is given by,

$$
x_{B / A}=x_{B}-x_{A}
$$

If it is divided by t, then similar formula can found for velocity.

In vector form,
$v_{B / A}=v_{B}-v_{A}$
Similarly, for acceleration,
$\boldsymbol{a}_{\boldsymbol{B} / \boldsymbol{A}}=\boldsymbol{a}_{\boldsymbol{B}}-\boldsymbol{a}_{\boldsymbol{A}}$

$$
\begin{aligned}
& \mathbf{X}_{B / A}=\mathrm{X}_{B}-\mathrm{X}_{A} \\
& \mathbf{V}_{B / A}=\mathbf{V}_{B}-\mathbf{V}_{A} \\
& \mathbf{a}_{B / A}=\mathbf{a}_{B}-\mathbf{a}_{A}
\end{aligned}
$$

Kinematics of a Point:

Dependent Motion
Total Length of the Rope is constant during the motion of any loads or pulleys.

Neglecting the distance from the support and load to the pulleys center, we can write,

$$
x_{A}+2 x_{B}=\text { constant } \cdots-(1)
$$

So, any small disturbance Δx_{A} will cause the disturbance Δx_{B} according to the formula.

$$
\text { So, } \Delta x_{B}=-0.5 \Delta x_{A}
$$

Differentiating equation (1) wrt t,

$$
v_{A}+2 v_{B}=0--(2)
$$

$$
A+2 V_{B}=0 \cdots-(2)
$$

$$
a_{A}+2 a_{B}=0----(3)
$$

Class Performance

[^0]Problem 8.2 (Beer Johnston_10th edition_Ex11.5)
Collar A and block B are connected by a cable passing over three pulleys C, D, and E as shown. Pulleys C and E are fixed, while D is attached to a collar which is pulled downward with a constant velocity of $3 \mathrm{~m} / \mathrm{s}$. At $t=0$, collar A starts moving downward from position K with a constant acceleration and no initial velocity. Knowing that the velocity of collar A is $12 \mathrm{~m} / \mathrm{s}$ as it passes through point L, determine the change in elevation, the velocity, and the acceleration of block B when collar A passes through L

Kinematics of a Point:

Curvilinear Motion

Radial and Transverse Components

Velocity:

Radial Component of Velocity, $v_{r}=\dot{r}$
Hence, Normal Component of Velocity, $v_{\theta}=r \dot{\theta}$
Velocity, $\mathbf{v}=v_{r} \boldsymbol{e}_{\boldsymbol{r}}+v_{\theta} \boldsymbol{e}_{\theta}=\dot{r} \boldsymbol{e}_{\boldsymbol{r}}+r \dot{\theta} \boldsymbol{e}_{\theta}$
Here, $\boldsymbol{e}_{\boldsymbol{r}}$ is the unit vector in Radial direction and
$\boldsymbol{e}_{\boldsymbol{\theta}}$ is the unit vector in transverse direction of the curve motion.

Acceleration:

Radial Component of Acceleration, $a_{r}=\ddot{r}-r \theta^{2}$
Transverse Component of Acceleration, $a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta}$
Acceleration, $\mathbf{a}=a_{r} \boldsymbol{e}_{\boldsymbol{r}}+a_{\theta} \boldsymbol{e}_{\theta}$

$$
=\left(\ddot{r}-r \dot{\theta}^{2}\right) \boldsymbol{e}_{\boldsymbol{r}}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \boldsymbol{e}_{\theta}
$$

r is the radius of curvature.

What will be the components in case of circular motion???

[^1]

Problem 8.3 (Beer Johnston_10th edition Ex 11.12)
The rotation of the 0.9 m arm $O A$ about O is defined by the relation $\theta=0.15 t^{2}$, where θ is expressed in radians and t in seconds. Collar B slides along the arm in such a way that its distance from O is $r=0.9-0.12 t^{2}$, where r is expressed in meters and t in seconds. After the arm $O A$ has rotated through 30°, determine
(a) the total velocity of the collar,
(b) the total acceleration of the collar,
(c) the relative acceleration of the collar with respect to the arm.

References

> Vector Mechanics for Engineers: Statics and Dynamics
Ferdinand Beer, Jr., E. Russell Johnston, David Mazurek, Phillip Cornwell.

[^0]: Position Equation: $\quad 2 x_{A}+2 x_{B}+x_{C}=$ constant
 Velocity Equation: $\quad 2 v_{A}+2 v_{B}+v_{C}=0$
 Acceleration Equation: $2 a_{A}+2 a_{B}+a_{C}=0$

[^1]: ${ }_{0}$

